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An analytical method is developed for the solution of internal problems
of nonsteady heat transfer for the laminar flow of a fluid through tubes
exhibiting various perpendicular cross sections. The method is based
on the combined application of integral transformations and variational
calculus. Transient processes are studied for the nonsteady heat trans-
fer in circular tubes and in plane-parallel channels, when the tem-
perature at the inlet varies according to a specified law.

Particularly for purposes of automatic control, con-
temporary engineering procedures call for the calcu-
lation of nonsteady heat transfer in the flow of fluids
through tubes (channels) of diverse geometric shapes
in perpendicular cross section. With the development
of atomic energy, increasing attention is currently
being devoted to the study of the transient processes
in the nonsteady regime found in heat exchangers.

The author of [4] describes the theoretical investi-
gation of the nonsteady problems of convective energy
transfer within a circular tube and in a plane-parallel
channel for a laminar hydrodynamically stabilized
flow of an incompressible fluid for the case in which
the dissipation of energy and the axial heat conduction
are neglected in the energy equations. The problems
are solved for constant temperature regimes at both
the inlet and at the walls of the tube.

In this paper we will deal with the more general
three~-dimensional problem of the liminar flow of an
incompressible fluid in tubes of arbitrary cross sec-
tion, when the temperature of the fluid at the inlet
varies with time according to a specified law, and when
the temperature of the wall varies along the length of
the tube. The boundary-value problem is initially
solved in general form, and then we consider a num-
ber of special problems for specific temperature re-
gimes at the inlet and at the walls. Analytically, the
method is based on the combined application of two
contemporary apparatuses of applied mathematics—in-
tegral transformations and variational methods. This
method exhibits a number of advantages relative to
the other analytical methods of solving the internal
problems of convective heat transfer which are known
in the literature.

In [3] this method is used to solve the internal prob-
lems of convective heat transfer for the steady-state
regime.

The energy equation for an incompressible flow
in a tube with a lateral cross section D, and also the
initial and boundary conditions for certain assump-
tions, are written in the form
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where I' is the side surface of a cylindrical tube whose
generatrix is parallel to the z-axis.
Let

T*(x, Y, S, p)=

(4)

ll
°<’38

f (%, y, 2, t)exp[ —(pt + s2)}didz.
]

After applying a double Laplace transform with respect
to time t and the coordinate z to Eq. (1), taking into
consideration conditions (2) and (8), we obtain
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For the transformed energy equation (5) we obtain
the following boundary conditions in the region of La~
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Fig. 1. Comparison of heat fluxes at unsteady-state heat transfer

with unsteady-state thermal conductivity (a) and change in un-

steady heat flux on circular tube surface under transient conditions

(b): a) 1-results of present study; 2-solution for thermal conduc-

tivity; 3-according to data of [4]; b) 1-according to formula (25);
2-according to [4].
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Fig. 2. Change in local Nus-
selt number in circular tube.
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Fig. 3. Change in heat flux at the wall
for a linear temperature variation at the
inlet.
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place transforms: j'j‘lpm‘pk dxdy—=B,,,,

[T* x, 9, s, p)}r =(P*w (S, p)' (6) D
We will seek the solution of the boundary-value prob- Copp = SS w(x, ¥) PP, dxdy,

lem (5) and (6) with the Bubnov-Galerkin variational o

- D, = jnje*(x, 4, S, p),, dxdy. (11)
I .
2 A N Having determined the coefficients Eﬁ(s,p) from
// 3 system (10) and crossing over to the preimage region
/ Vs o from images (8), we obtain a solution for the basic
/ / problem in the form

0 ez a4 g6 g8 fo .
To(% 4 2 ) =9u(@ D+ @ O (x, 5. (12)

Fig. 4. Heat transfer from slot chan- =1

nel walls in the case of energy dissi~

pation: 1) X = 0,005; 2) 0.1; 3) 0.2;
4) 0.4; 5) 0.8.

This represents the formal description of the combined
application of the double integral Laplace transforms
and the variational methods to the problems of convec-
tive heat transfer in nonsteady regimes. It should be
pointed out that the stabilized field of velocities w(x,

v) is assumed to be known,

method [1]. Let us assume that we have selected a
system of coordinate functions

Pl g), Palts §) s WX, B), ) Let us consider certain special problems of heat
transfer.
satisfying zero boundary conditions, i.e., 1. Heat transfer in a circular tube.
If we neglect the function of the dissipation of the
(6 9)p=0 (=12, o, n). heat of friction, the energy equation has the form
The approximate value of the function T* (x,y,s,p) is T oT s 7
determined in a family of functions of the form _a_ +w(r) =4 9, T . (13)
ot 0z r or or
To(%, 4, 5, p) = @ux (5, P) -+ 2 axls, P (x, ). (8) Substituting the Hagen-Poiseuille equation
=1
— L[
Let us find the discrepancy for Eq. (5) when T* = w(r) =2 |1 — R
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which is different from zero in region D.
The coefficients aj(s, p) for which discrepancy (9) oT oT 1 3 ar
exhibits the least deviation from zero for all values of T +({1—£9) T T ot (E—Eg) . (14)
x and y from the region D, according to the Bubnov-
Galerkin method, is determined from the following Let us study heat transfer for constant boundary
system [1]: conditions:
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e splho=To (D) =0 9

We will seek the approximate value of T* (£,s,p) in a
family of a linear composition of the form

Ta(s, & p) =Tut 3 Gels, pL—2)Pe-b.  (19)
k=1

To reduce the amount of mathematical calculation, we
present the solution in first approximation. With n =
= 1 the discrepancy is equal to

4E—p(l—E)E—s (1 —8%) x
T [p+ (1 — )] g £0.

& [E; (s, p) E] ‘—'{—
X ai (s, p)+ (T,

Requiring the discrepancy €; to be orthogonal with re-
spect to the coordinate function ¥y(¢) = 1 — £2, we ob-
tain

_a’;(s’ p)z(To-TW)(Dlp"!‘DZS)’ (20)
A+ Bp4Cs
where
A=1, B=_1,
6
I 1 1
C=—, Dy=—, Dy=—.
8 YTy TP e

From the operational-calculus table [2] we have

P =
A4+ Bp+Cs
L exp — A\ when x> & o,
B B B
= c
0 when X < 5 T. (21)
Consequently,

@ (s, p)=ay (X, Fo) =

D, A C
== e —— F hen X > — Fo,
B xp( 7 o)wen >B o

D, A C
—2 e — —~— X ) when X< — Fo. (22
B XP( C ) 7 (22)

In first approximation, the temperature in the fluid
flow is found in the form

T(g, X, Fo) =

Tw+ —2— exp(— 6 Fo) (1 — &%)
when X > 0.75 Fo,
Ty + -5 exp(—8X)(1 — &)

when X < 0.75Fo. (23)

Dropping a number of intervening calculations, we
write the temperature field in third approximation:
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T( X, Fo)—T,
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¢, (B)exp(—y, X) when X <<a, Fo.  (24)
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The values of the coefflclents Bys Yk, and ay and
of the functions gﬂk(g) and q)k *(£) are presented in the
table,

The heat flow q needed to maintain a constant wall
temperature beyond the jump in Ty (AT =Ty~ T, =
= 0) is found from solution (24) according to the follow--
ing formula:

[35) o

when X >a,Fo,

?»(T TW) }J

= anZ*) _
(%) ewwn

when X <Ca, Fo. (25)

Let us analyze the process of heat transfer imme-
diately after the jump in the wall temperature (T —
— Ty # 0, Fo >0), In that part of the tube which has
not yet been reached by the fluid which, prior to the
jump, was outside of the tube, the temperature condi-
tions at the inlet have no effect on the heat-transfer
process. In the case of a uniform wall temperature,
for this region there is no change in heat transfer over
the length of the tube, and the conduction term in Eq.
(13) is equal to zero (w(3T/0z) = 0}, Thus the problem
is reduced to the solution of an equation of nonsteady
heat conduction for a solid unbounded cylinder. The
heat flow in these segments is determined from the
top line in (25) and yields the following:

R _
AMTo—Ty)
= 2.002 exp (— 5.782 Fo) -+ 1.556 exp (— 30.718 Fo) -+
-+ 11.352 exp (— 113.494 Fo). (26)

Comparison of relationship (26) with the exact solu~-
tion of nonsteady heat conduction and the results ob~
tained in the investigation carried out by the author
of [4] are shown in Fig. 1a. Figure 1b shows the curves
plotted according to Eq. (25) for various values of x,
and these are compared with the data of [4], and from
these we see that they are in good agreement.

The temperature in the fluid flow, given a sufficient
amount of time (Fo > ozl?X) in third approximation is
written in the form

T (&, X, Fo) — Ty
Ty— T

3
=~ Vo Eexp(—v, X) (x _

k=]

t
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The local Nusselt number referred to the mean~in-
tegral temperature with respect to the flow rate of the
incompressible fluid is expressed by means of the re-
lationship

Nu=N(@Z)=

=[2.992 + 1960 exp (_ 20.282 i) —

Pe R

157.548 i)]x
Pe R

— 179 exp (_

Pe R
157.548 i) -
Pe R ] ;
from which the limit value of Nugiap = 3.66. This quan-
tity differs from the familiar Nusselt number (3.65) by

only 0.05%. The local Nusselt number N(z), even at a
distance of

x[0.816—0.124 exp (_ 20282 2 ) —

— 0.306 exp (— (28)

@ 2 005 d=2R

wd d (29)

beyond the inlet to the tube (for fluids flowing from a res~
ervoir) differs from 3.66 by no more than 1% (see Fig. 2).

Let us determine the temperature in the flow of an
incompressible fluid when the temperature at the in-~
let to the tube varies according to a linear law, For
this we have to solve Eq. (14) for the following bound-
ary conditions:

(T E, X, Fo)lpomo = T,

[T X, Fo)lx=o =@ () = Ty, + ATt = T, (1 + PdFo), (30)
Pd: ATR2, S (31)
aT, R?

Equation (14) in the Laplace-transform region is
brought to the form

d dT* )
E(g—da )‘
—*[P"l‘(l—EZ)SIET*(E,S’P)+T0[P+(1—52)5]§+
1 —z2
&( pg)spd_o (32)

Having determined the coefficient E’f(s,p) from sys-
tem (10) when n = 1 and crossing over to the preimage
region, we find the solution in first approximation in
the following form:

TE X,Fo)—T, _
ToPd

(Fo~ —g— X) exp(— 8 X) (1 —E%
4
= when FO>?X,

(33)

0 when F0<%X.
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The heat flow q needed to maintain the initial wall
temperature (T() is found to be the following:

«_ 4R

q = ——— =z

(QFO—— % X) exp (— 8X)

= when Fo>—§~ X,

0 when Fo<—§~ X = 4z

3RePr R’

(34)

The time variation of the local heat flow at various
points x is shown in Fig. 3.

While the temperature of the fluid entering the tube
varies with time according toaperiodic function, i.e.,

[T, X, Fo)lx=p =T, + AT sin (PdFo), (35)

where Pd = wR%/a is the Predvoditelev number, the
temperature within the tube can be calculated from
the approximate formula

TE X,Fo)—T, _
AT

4 exp 8z
3 (Repr RJ®

S CI e

hen F —_— L = X,
¥ 0= 3 RePr R 3
0 when Fo<i 1z (36)
3 RePr R
whence
et P )
AMT 3 3 RePr R
z
ex (37
X p( PrRe R) )

2. A plane-parallel channel.
The boundary-value problem (1)—(3) is written out
in the following equations:

ar ar FT  n (oo
G T e = +CY(ay) . (39)
3w, ¥\
= 1— |4

W)~ [ (b) ]

[T (y, 2, £)}s=0 = To = const
(—b<Ly<h, 0Lz w), (39)

[Ty, 2. 00 =10,8), [Ty, 2, Nymnyer = P22, 1)

(k=1,2). (40)

in the Laplace-transform region (T(y, z, t) ==T*(y, s, p))
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we have

d2T* .
CGE —[p+w(y)siT*

Il
e

. 1 [ 0w \?
+ 1T + w (9) s 9o (P} + Cy ("a;) (41)

(T* (4, 5, Plmiits = Qals, p)  k=1.2).  (42)

The solution of the boundary-value problem will be
sought in the family of functions

— Ly — —
o5 D) = 5 e 5265 P) — 5 (5 P+

+@mm+ammh

gm0 e

In all other respects, the problem is solved in a man-
ner similar to the previous problem.

The heat transfer is governed exclusively by the
heat of friction.

Let

@1(2, £) = @y (2, 1) = Ty = const, qq () = To, (44)

i. e., the temperature of the channel wall is equal to
the temperature of the liquid (gas) at the inlet. It is
evident that in this case the variation in the tempera-
ture of the fluid flow and the removal of heat through
the channel walls are due entirely to the heat of fric-
tion.

We will continue the solution of the problem for the
first approximation, i.e., we will seek the tempera-
ture field within the transform region among functions
of the form

— . / 4
T*(y,s,p) =Ty + a1 (s, p) [1— (%) ] ) (45)

Let us substitute the value of (45) into Eq. (41), under
the condition that (44) is uniquely defined; in this case

— 12 2
g ly, aifs, p)l = {—%(%) .
—m+wwm[L—t%)ﬁE$mH_

Inwh [ v
cy b (79—) #0

Requiring the discrepancy €; to be orthogonal with
respect to the coordinate function ¢;(y) = [1 = (y/b)*] in
the region D {~b =y = b}, we have

IOy, Pp——
b A4+Bp +Cs’
where
A= 32a  B= 645 ’
7 45
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24w,

C=171wb, D= .
b cy

From the operational-calculus tables [2] we find that
(s p)FE ()=

3 quwd

4 A
for z>1, 2w,

3 pad 2673 2
B I e
i [ ! exp( Pe % ”

for z2<C 1, 2wy,

[1 — exp(— 3.214 Fo)]

where

Fo:it., Pe=RePr=—lﬂ9b~
v a

The variation of temperature within the plane-par-
allel channel on dissipation of energy and equality of
the wall temperature to the initial fluid temperature
is written, in approximate terms, in the following two
analytical expressions:

T(y, Z, t) =

3 2 4
=T°+T nfo[l——exp(——S.QMFo)][l—(—%) ]

when 2> 1. 2w, (46)

T(y, 2, t) = To +

3 2 2673 2z 4
3 mw {, (_w_ {¥
Tty [‘ P~ e b>}[1 ( b) }

when z<<1.2w. 47)

The temperature at that segment of the channel
which has not yet been reached by the fluid which was
outside the channel at t = 0 is determined from formu-
1a (46). At these points the heat-transfer process is
unaffected by the inlet conditions and everything pro-
ceeds as in the case of an unbounded slotted channel—
when the wall temperature is uniform along the length
of the channel—in which case the convection term in
Eq. (38) is equal to zero, We then derive the solution
for the problem of nonsteady heat conduction for an
unbounded plate with internal sources whose local pa~
rameters are parabolically distributed over the entire
depth of the plate.

Formula (47) is used to determine the temperature
for the rather long period of time't in which the origi-
nal fluid within the channel is expelled by the fluid '
from the reservoir. This solution, beginning from the
point

1 =z

Ez:oﬁ (d=20) (48)

and beyond differs from the expression
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3 2 1
Tgap @) =To + T T])i‘vo X [1—— (%_) ] (49)

by no more than 4%. The temperature distribution at
the stabilized segment is thus determined from rela-
tionship (49). This expression is in exact agreement
with the familiar Schlichting solution [5].

Equation (48) determines the length of the thermal-
stabilization segment for the case of energy dissipa-
tion.

Differentiating (46) and (47), we have

qB
nw;

g* =

311 —exp(—3.214F0)], z>>1. 2wy,

- S[I—exp (—— 2'373 %)] z<< 1. 2wd. (50)
e

Figure 4 shows the curves for the change inthe heat
flow g* for any instant of time at various points X =
= (1/Pe)(z/b).

In conclusion, we will point out that the proposed
method of calculating the interior problems of convec-
tive heat transfer in the nonsteady regime makes it
possible to resolve a number of new problems pertaining
to tubes and channels with "nonclassical® profiles of
perpendicular cross section. In particular, for tubes
of elliptical cross section and of a cross section in the
shape of an equilateral triangle we can solve a num-
ber of problems concerned with the practical aspects
of convective heat transfer in the case of laminar fluid
flow. The stabilized velocity field of the fluid flow
should be represented in this case by the familiar hy-
drodynamic equations

wen=nl (2] (2]

INZHENERNO-FIZICHESKII ZHURNAL

UZ)(X, y) =

om0 (5]

where wy is the average velocity; 2h is the side of the
triangle. Similar problems will be considered in an-
other paper.

NOTATION

D is the cross-section of the cylindrical tube; p and
s are the parameters of the double Laplace transform
in the Laplace~transform region; T*(x,y,s,p) is the
temperature field in the fluid flow after Laplace trans~
formation; is the sign oftransition from image to
preimage and back; w(x,y) is the stabilized velocity
field of the fluid flow; w; is the mean velocity; v is the
kinematic viscosity; 1 is the dynamic viscosity; A and
a are the thermal conductivity and the thermal diffu-
sivity coefficients; 7 is the dimensionless time (the Fo
number); X is the dimensionless coordinate along the
tube axis.
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